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ARTIFICIAL INTELLIGENCE AND COVID-19

Integrating artificial intelligence in bedside care 
for covid-19 and future pandemics
Michael Yu and colleagues examine the challenges in developing AI tools for use at point of care

The covid-19 pandemic created 
unprecedented challenges for 
both clinicians and healthcare 
institutions. Adapting to a rap-
idly emerging disease while fac-

ing staff and material shortages prompted 
difficult decisions on how best to allocate 
resources. Artificial intelligence (AI) rapidly 
moved to the forefront of the effort to adapt 
our healthcare systems to coping with 
covid-19. Hundreds of new models were 
developed, promising best solutions for all 
aspects of patient care from diagnostics to 
therapeutics and logistics. Yet only a small 
minority of these models were deployed, 
and none became widely adopted.1 2 We 
argue that the covid-19 pandemic exposed 
flaws in the technological, institutional, 
and ethical foundations upon which AI 
must build to considerably improve bedside 
care. If AI is to be part of a rapid response to 
future health crises, the challenges that it 
faced during the covid-19 pandemic must 
be carefully analysed and overcome.

AI is a branch of computer science 
that uses data and algorithms to extract 
meaning in a way that is characteristic 

of intelligent beings—that is, turning 
data into effective decision making 
processes. Research applications of AI in 
medicine have already emerged far and 
wide—for example, in drug discovery and 
modelling of complex biological systems. 
By contrast, efforts to integrate AI into 
everyday clinical care have had minimal 
success, despite the comparatively simple 
nature of the problems: optimising patient 
trajectories, maximising use of existing 
facilities, or determining when and 
how to reallocate resources. We surmise 
that this translational gap, which was 
magnified by the covid-19 pandemic, is 
due to the nature of the underlying data, 
the infrastructure through which they 
emerge, and the human context in which 
they occur. By understanding the influence 
of these factors on the chances of success 
of AI, healthcare systems can improve their 
readiness for future crises.

Development challenges
Many high quality data are essential for 
training an AI model, during which pat-
terns are identified from observations, and 
are developed into a generalisable model 
for prediction. The covid-19 pandemic dis-
closed significant differences in the ability 
of institutions to provide data rapidly in 
standardised formats, suitable for training 
AI models. Even within a single institution, 
anomalous events, such as the start of a 
pandemic, can limit the availability of rele-
vant data. These problems are compounded 
when collaboration extends beyond institu-
tional, provincial, and national borders—
often forcing researchers to choose between 
large datasets of superficial information, 
and smaller datasets that delve into more 
detail. Failure to procure data of sufficient 
quality or quantity can make the develop-
ment of an AI model challenging, and lead 
to biases and erroneous conclusions.

Bedside clinical care relies on inputs 
from many inter-related processes, which 
often straddle disjointed data systems. 
These data systems must be reconciled 
before they can be used for training AI 
models. Data might originate from patient 
monitoring devices, observations entered 
by workers into electronic health records, 

or known constraints on human and 
material resources. Manual entry might 
be unavoidable to capture data that are 
known only to patients, care givers, or 
hospital decision makers. Existing systems 
might need to be adapted to emergency 
practices, such as the repurposing of units 
to create temporary intensive care facilities. 
Regardless of the initial source of data, 
interoperability is critical. Institutions 
should promote efforts to adopt well 
established standard terminologies, in 
order to aid data quality assessments and 
collaboration. Data standardisation is a 
cumbersome and rate limiting process, 
which should be started well before 
downstream applications.

If a particular event under study is 
rare, cooperation between institutions 
might be essential to make the use of AI 
models feasible. For example, early in 
the pandemic, the modest number of 
patients with covid-19 treated at individual 
institutions was insufficient to train 
robust models for prediction of patient 
trajectories and outcomes.3 4 Pooling 
patient level data from many institutions 
to create larger datasets—the traditional 
approach in clinical research—proved to 
be impractical, owing to time consuming 
ethical and legislative considerations. Here, 
AI offers several interesting new solutions. 
“Few-shot learning” (making predictions 
based on a limited number of samples) is 
an approach that uses readily available 
data (eg, historical information) to make 
generalisations about unseen data—for 
example, allowing the development of a 
covid-19 diagnostic model using a small 
number of training cases.5 Federated 
learning is another approach that relies 
on sharing models, rather than data, 
across institutions. This strategy allows 
pooling of knowledge without exchange 
of sensitive information.6 Much like data 
standardisation, these approaches require 
a high level of technological preparedness 
to be ready for use during a health crisis.

Training with a sufficient quantity of 
high quality data does not guarantee that 
AI models will generalise well. Similar 
concepts might be defined differently 
across institutions: for instance, operations 

KEY MESSAGES

•   Despite substantial research, artifi-
cial intelligence (AI) has had a lim-
ited effect on bedside care during the 
covid-19 pandemic

•   To develop AI tools for bedside care 
and hospital management, research-
ers require standards for integrating 
data from disparate sources, and 
software that can process data in 
real time

•   Variations in healthcare institution 
policies, resources, expertise, patient 
populations and differences between 
prepandemic and postpandemic 
operations require careful considera-
tion in generalising AI solutions

•   Engaging AI researchers, health-
care providers, ethicists, and other 
experts is necessary to develop 
standards for establishing when it is 
appropriate to deploy AI tools and to 
integrate AI into existing workflows
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categorised as “urgent” might imply 
different types of care across different 
hospitals. Recent work has attempted 
to create models that account for such 
differences.7 These challenges are 
magnified across geographical areas, 
where concepts might need to be translated 
between languages, and adjustments 
made for baseline patient characteristics 
and technological capabilities. In some 
instances, differences in technological 
capabilities could prevent low income 
countries from benefiting from AI, or 
require specialised approaches towards 
knowledge transfer. Federated learning 
might improve model generalisability, 
because it allows for localisation when 
part of a model is trained locally. The 
performance trade-offs of institution 
specific approaches should be weighed 
against more generic AI solutions.8

Undoubtedly, the overarching solution 
to the challenges described in this 
section is to enhance coordination and 
knowledge sharing among researchers 
working on AI models for bedside care. 
A living systematic review of AI models 
pertaining to covid-19, as of August 
2021, identified 27 models for disease 
progression.9 Another systematic review, 
published in March 2021, evaluated 62 
studies involving the use of chest computed 
tomography for prediction of covid-19 
disease progression.10 Both reviews found 
methodological flaws and risks of bias in 
almost all studies, attributing this, at least 
in part, to lack of coordination. To meet 
systemic demands, and to better guide the 
direction of AI research, institutions should 
support efforts to move collaboration 
beyond recognising common features and 
weakness across studies towards a deeper 
synthesis of best practices and lessons 
learnt to actively improve future research. 
The covid-19 pandemic has bolstered AI 
workshops, including notable efforts in the 
United Kingdom.2 These workshops present 
a key opportunity to develop solid guidance 
for AI solution developers, and to create a 
stronger, more tightly knit community.

Requirements for deployment and adoption
To achieve a sustainable impact, research-
ers into AI should look beyond model devel-
opment and consider how solutions can 
be practically and ethically implemented 
at the bedside. This approach demands 
a broader perspective that ensures inte-
gration with hospital systems, satisfies 
ethical standards to safeguard patients, 
and adapts to existing workflows in a way 
that acknowledges and leverages clinical 

expertise. If AI researchers do not adapt 
their work to real world clinical contexts, 
they risk producing models that are irrel-
evant, infeasible, or irresponsible to imple-
ment. One challenge is upgrading hospitals 
systems to support trained AI models. For 
example, diagnostic models for early detec-
tion of lung disease might need to be inte-
grated with picture archiving and dictation 
systems. Upgrading these systems can be 
difficult or unwise during a health crisis, 
suggesting that health institutions would 
benefit from investing in these infrastruc-
ture upgrades before the demand arises.

AI also needs to be guided by clear ethical 
standards.11 12 For example, researchers 
recently discovered unintentional 
racial biases built into decision making 
algorithms used to recommend care in 
the United States.13 Pressure to develop 
AI models quickly heightens the risks of 
exacerbating inequalities within and across 
borders.12 Efforts to establish standards for 
research involving AI have progressed, 
including the CONSORT-AI extension for 
clinical trials using AI,14 and developing 
work on TRIPOD-AI for  reporting 
guidelines.15 These standards will enhance 
transparency and reproducibility, which 
had remained wanting up to this point.16 
As with diagnostic tests, medical devices, 
and therapeutics, translation of AI from 
bench to bedside should follow evidence 
based clinical evaluation standards. Faced 
with the pressures of a pandemic, these 
standards are crucial to ensuring more 
responsible model development.

To be used at the bedside, AI models 
must also achieve clinical acceptance 
through mutual, effective knowledge 
sharing between AI researchers and 
clinicians. As the potential impact of AI at 
the bedside increases, medical educators 
should consider introducing the basics of 
data science and machine learning to all 
clinicians.17 Meanwhile, AI researchers 
can develop a better understanding of 
clinical needs and avoid developing black 
box technologies as much as possible. 
Thus adaptation is required, such as 
developing more interpretable models, 
following the approach of explainable 
AI.18-20 The acceptance and usability of AI 
models can also be improved by working 
with clinicians to design models that 
supplement—rather than replace—clinical 
judgment.21 Additionally, AI researchers 
should integrate other tools in clinical 
decision making, when appropriate. For 
example, predictions from an AI model can 
be enhanced when embedded in a decision 
support system that strengthens “what if” 

scenarios, allowing the user to explore 
alternative strategies to treat patients 
when beds in the intensive care unit are at 
capacity.22 Disruption to clinical processes 
caused by the covid-19 pandemic should 
be seen as an opportunity for clinicians 
and health institutions to rethink their 
practices.

Patient acceptance of AI at the bedside 
must be earned through all stages of 
development and implementation. This 
requires guiding AI research to take 
account of patient values, and deal with 
legitimate concerns about a technology 
that can magnify biases and inequalities 
in the healthcare system.12 A critical first 
step towards this goal is to participate in 
cross sectional and intersectional research 
to understand the diversity of patient 
perspectives across factors such as sex, 
age, wealth, race and ethnicity, and health 
status. Subsequently, guidelines will need 
to incorporate such perspectives into 
enforceable policies that can help to govern 
the design, development, implementation, 
maintenance, and oversight of AI as applied 
to bedside care.

Enabling robust, agile, responsible AI at the 
bedside
AI has yet to produce a single widely 
accepted tool for bedside care of patients 
with covid-19, reflecting gaps in research, 
technical details, and the policy environ-
ment surrounding it rather than a failure 
in the field. A considerable amount of work 
remains to be done before solid founda-
tions are laid for deployment of AI at the 
bedside.

Researchers in AI can benefit from a more 
expansive view of the problems they are 
solving, by considering the work of other 
researchers, and the full decision making 
and technical context in which their 
solutions are to be deployed. Developing 
networks with other AI researchers, 
clinicians, hospital staff, and patients can 
guide research efforts towards high impact 
areas. During a pandemic, establishment 
of these networks can be used to accelerate 
research, while acting as a safeguard 
against potential oversights.

On the technical side, health institutions 
need to take advantage of crisis free 
periods to develop the infrastructure 
required—including efforts to promote 
standardisation and interoperability. 
Adopting, promoting, and enhancing 
standards such as the Fast Healthcare 
Interoperability Resources, which is used 
to capture institutional data, helps to make 
AI more readily transferable, and supports 
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multisite research.23 Coordination across 
institutions is also fundamental, and many 
initiatives have been spurred on by the 
covid-19 pandemic, such as OpenSafely in 
the UK or CODA-19 in Canada.24 25

Finally, clear guidelines are required for 
AI research and deployment. To achieve 
clear guidelines requires a large scale 
effort to understand the diverse values and 
needs of those who might be affected by 
AI at the bedside, including patients, care 
givers, and hospital administrators. This 
process should be followed by the creation 
of enforceable standards, involving 
multistage evaluations of AI models, which 
can serve as guiding principles for model 
development and deployment.

Creating this research, technical, and 
policy infrastructure requires a substantial 
effort, although one that is already under 
way. We are confident that AI researchers 
already recognise the need to move the 
focus beyond individual projects, and 
towards developing translational tools that 
can guide AI research into clinical practice.
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